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Uniqueness of the solution and variational principles are well known for 
the statics of rigid-plastic bodies [ll. The situation is completely 
different for the dynamics of rigid-plastic bodies. The first and only 
wor : on the variational methods in this area is a paper by Rzhanitssn 
IId, where the author proposes to use Lagrange’s principle for the de- 
termination of motion of beams and plates beyond the elastic range. A 
rigid condition however is imposed in that the form of the motion remains 
unchanged in time. Moreover, the question whether the Lagrange’s 
principle is applicable to rigid-plastic bodies remains open. 

Below an extremal property of the dynamics of rigid ideally plastic 

bodies is demonstrated. It is shown that a true instantaneous accelera- 
tion minimizes some functional, whereby the true instantaneous accelera- 
tion field is unique. This minimum principle can be used for approximate 
solutions of ProbleMS of dynamics of rigid-plastic bodies. 

1. Let a rigid-plastic body have volume V and piecewise smooth bound- 
ary S. On a part of the surface S, surface loads T, are given and on the 
remaining part of the surface Sv velocities vi are prescribed. At time 
t = to the velocity field ui*(x, y, z, t,) is given in the body, i.e. 
the velocities of deformations E .*.= 1/2(v. .* + v. .*) are known. ‘Ihe 
asterisks denote here and in thets&uel thi*irue f!dids. The dots above 
the letters denote differentiation with respect to time. We neglect the 
changes of the geometry of the body in the process of deformation. 

Admissible velocities uifx, y, z, t) and corresponding admissible de- 
formation velocities E~~(x, y, x, t> = l,/Z(v, i + v~,~) will satisfy the 
following: 

, 

1. they satisfy kinematic boundary conditions on SV; 
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2. 

3. 

4. 

5. 
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they do not violate continuity of the body; 

they satisfy the condition of incompressibility of the material, 

ui i=o; 
, 

the deformation velocities satisfy the flow law associated with 

the yield function f(oij); 

at the instant t = t0 admissible velocities coincide with true 

velocities 

A kinematically admissible stress field vii consists of stresses re- 

lated by the flow law with ~~~~ If E ij = 0 then any arbitrary state of 

stress is possible either inside or on the boundary of the yield surface. 

If ~~~ f 0 th en uij is represented by a point on the yield surface, whose 

outward normal coincides with Ed;. Various possible cases are shown in 

Fig. 1. 

Fig. 1. 

For strictly convex yield surfaces the stresses a.. are determined 

uniquely. An admissible acceleration field is obtaine ‘4 by differentia- 

tion of an admissible velocity field 

ui (xv Y, z7 t~) = ( avi (x, Y, 2, t) ) . . 
at t=t,’ 

Sij = $ (201, j + wj,O (l-1) 

The true accelerations wi* and ~~~~ are distinguished from all 

possible ones by satisfying the equations of motion 
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6G,j+ pi - mWi* = 0 (1.2) 

where pi are inertia forces, m is the density, aij are true stresses, 
and therefore they satisfy the boundary conditions on ST 

6*ijnj = Ti (I*% 

It is necessary now to consider the limitations placed on the admissi- 
ble deformation velocities by the associated flow law. 

Let f(“ij) = 0 be a convex, smooth surface; then 

where A and af/aaij are functions 

h = 0, if f<O 

A&O, if f=O (W 

of time and space coordinates. Differ-. 

entiating it with respect to time, we have 

II = 0, h = 0, if f<O 
.* ‘ af 
etj = k &j” + L 

a af -- 
at kij li>O, if f co, x=0 P.5) 

i arbitrary if A>0 

‘Ihus, for A = 0 the deformation accelerations ~~~ = haf/doij satisfy 

the associated flow law with a nonnegative factor A (Fig. 2~1. 

If A > 0, then no limitations are set for E ij (Fig. 2b). 

Let us now consider a piecewise smooth 

fk = &jkaij 

yield surface 

Then 

Eij = hkaijk 
i 

&=I 0, 

hk)/% 

if f*<O 

if fk=O 

It follows that 

i, = 0, 
. . . 
8ij = 

I 
hkdijk. 

I 

ik>& 

x k arbitrary 

if !,<o 

if fk=o, h,=Q 

if h,>O 
(l-6) 

Consequently, for a . . = 0 the deformation acceleration satisfies the 

generalized associated ‘) low law. 
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If 

?b#OY ?kK = 0, fk<O ’ (k+q 

then E.. 

‘h 

is orthogonal to the surface f, = czij CT., and can be directed 

along t e inward normal (Fig. 2~). f ‘J 

If 

b>O, hK = 0 (k#rh fk<O (k#r, r+f), A+1 = 0 

then the deformation accelerations are directed as shown in Fig. 2d. 

If the stresses correspond to the corner points, then no limitations 
axe set on eij. 

2. 77aeoren. From all kinematically admissible E ij, 
true fi;, * 

wi and uij, the 
wi and uif at each instant are those which minimize the ex- 

pression 

J= s 
V 

T2 dV - \ PiwidV - \ Tiwids + \ &$dV 
ST V 

(2.1) 

Proof. It is necessary to prove that 

J*-J= $(wi*“-wca)dV-Spi(wi”-wi)dV- 
s v v 

- \ Ti (Wi* - W<> dS + \ (a?j ic - Gij&j) dV < 0 
S V” 

(2.2) 

Let us transform the nonpositive part in (2.2) 

5 -$ (Wi”” -w:)dV = 
V 

d 

mwi* (wi* - wi) dV - \ 
m(Wi 

* 
- Wi)2 

r= dV (2.3) 
v’ 

2 

Using (1.2) and (1.3), we transform the following integrals 

s 
IILZU~* (wi* - wi) dV - 

s pi twi* - Wi) dV - 
s 

Ti (Wi* - Wg) ds = 
v V s 

=s 
‘t MWi* - Pi) twi* - wi) dV - 

1 
1 Bitjnj (Wi* - Wi) dS = 

V s (2.4) 
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= c G7j.j (wf - Wi) dV - [ [ ayj (WT - W+)j] dV = 
v” vJ 

W,jl dV = - \CS~ (E: - e,j)dV 
; 

Here the symmetry of aii* was used, and 
and wi have continuous partial derivatives 

ordinates. 

it was assumed that u. .*, 
‘I 

wi* 
with respect to the space co- 

Substituting (2.4) and (2.3) into (2.2) we obtain 

* _ J=_ s m(wi;- wi)a 
CN + &j (arj - Qij) dV 

V V 

(2.5) 

Let us investigate the expression 

iij (Ozj - Uij) (2.6) 

If at the instant t = t,, we have ~~~~ = 0, f(oij) < 0, then ‘E’ij = 0. 

If e. ,* # 0 and. f(oij) = 0 represents a smooth, convex surface, then 
oij are’6etermined uniquely from (1.4)) and kinematically admissible 
stresses coincide with uij*, the Expression (2.6) at this point reduces 
to zero. 

If f(aij) = 0 and Q..* = 0, then because of (1.5) we have ‘E’. .(a. .* - 
a..) G 0, since this q&rtity is proportional to the 
tlZ external normal to the surface f at the point u,.; 

scalar pr &rc:Jof 
by the vector 

directed from u to u. .+. If i 
‘J 

surface, then u. .* and’;. . 
ij+ defines a hyperpiine 

cause due to (l.“!) th ” 
are both in this hyperplane. 

e expression (2.6) is nonpositive. 

jk on the yield 
lhis is so be- 

Consequently, for all cases (2.6) and thus (2.5) are 
theorem thus is proved completely. 

nonpositive. The 

From this theorem follows irmrediately the uniqueness of the accelera- 
tion field at each instant. Suppose there are two complete solutions 
y.. . 

rJl* wil; uijl and Vi .2; wi2; and u.. . Let the functionals J, and J, 
correspond to these so utiow. i From’Ge theorem it follows that J, < J 
for an arbitrary admissible J, including J,. Rut by the same token J, is 
smaller than arbitrary J including J,, thus J, - J, = 0. This expression 
may be represented in the form analogous to (2.5) 

J, - J, = - 
\ 

m lwil - wi2)a 

J 
2 

dV + \ Eijl (6ijz - oijl) dV = 0 
V 
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Since both integrals are nonpositive, each equals zero. It follows 

from here that wil E 

5 

wi2,in the whole VO~UIW V, and consequently 'iii1 = 

ijz. The stresses oij at the points wheresij =O,.ii. = 0 remain undeter- 
mined. IfEij#Ooriii=O, i'. #O,thenoiiis 

rf 
d etermined from the 

mechanism of flow, and in the case of a piecewlse linear yield surface 

can be multivalued, 

3. It is possible to generalize the minims principle praved above to 

the acceleration fields which have discontinuities on the surfaces divid- 

ing the body into a finite number of regions inside which the accelera- 

tions are continuous, Such a generalization is necessary since in 

practical problems the accelerations, as a rule, are discontinuous. To 

the Expressions (2.11, representing functionafs J, one must add terms 

corresponding to the work of the stresses causing accelerations on the 

discontinuity surfaces, i.e. 

(3.2) 

J E \ TUii2dV - \ pi”2 dV - \ 
Q . 

Il’.i~idS + \ ai;iijdV + \ G<jrLj fWi] dt 
v ST V i 

whereby the last integral is extended over all discontinuity surfaces I, 

where the jump of the accelerations [wi] f 0; here and in the sequel the 

brackets denote the magnitudes of the humps. 

In (2.2) additional terms are 

where t* is the discontinuity surface of the true accelerations, and 1* 

generally does not coincide with 2. 

In (2.4) the surface integral is transformed as follows 

- f Ti (Wi* _ wif dS ^=13 - 

1: 

\ @ii Lb &I + \ *ge,(-jl; - 

+ + 

- \ oTj IZ* fw; j dE” -+- ‘\ aTj nj fwif dl 
i* 1 

In the final expression for (2.5) there will appear an integral 

which can be estimated as being 

vestigate the conditions at the 

ous body. 

Oij) ?Zj {Wil dE (3.2j 

nonpositive. To do this we have to in- 

jumps of the accelerations in a continu- 
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Consider a case of plane deformation. 
the flow law are the usual ones 

The plasticity condition and 

(6, - qp -- 
4 

+ T,; = k2 (3.3) 

(3.4) 

Let point P belong to 1 for t = to. Let us introduce for simplicity a 

local system of coordinate axes with the origin at P and the x-axis 
directed normally to the discontinuity line. 

If [qj’ = 0 on 1, then the following conditions are satisfied 

[.gl+G[g]=O, [s]=o (3.5) 

where G is the speed of the discontinuity line. From the condition of 
conservation of mass follows that [uJ = 0 in the incompressible material 
along the moving discontinuity line. l * Ve have therefore from (3.5) 

Thus [IUJ # 0 only for C; # 0 and DvJ&l # 0, which, because of the 
incompressibility and kinematic conditions (3.51, is possible only for 
[uJ # 0 for t = tO. The same conclusions follow in a more general form 
from the Thomas’ book [3]. Thus, if the discontinuity line is stationary, 
or if the velocities do not suffer there a strong discontinuity, then 
[wJ = 0 and the integrand in (3.2) is 

D = (& - GU) [wvl (3.6) 

If A = 0, then Ed=, ~~~~ ~~~ satisfy (3.4) with the multiplier h > 0. 
If we consider the discontinuity line as a narrow strip with rapid, but 
continuous variations of w then it easily follows 
that T = f k and the sig’here coincides with the 
over, ilnce ITCH* 1 c k, then 0 < 0. 

If A > 0, then a kinematically admissible T 
=Y 

is 

(3..%) uniquely, and consequently 

f&n (3.3) and- (3.4) 
s+ of [US. More- 

determined from 

l * Exceptional cases constitute linear problems where a velocity jump 

can occur because of the variation of the cross-section. 
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f:, - zxlr = 0, II=0 

Finally, [w$ # 0 can be true only along the line of strong velocity 
discontinuity, thus 

and the integrand in (3.2) is 

D = [&I (ox* - a,) (3.7) 

Considering the discontinuity line as a limiting case of a strip of 
width Ax, where wx is varying rapidly but continuously, and because of 
the incompressibility of the material, 
and letting An and Ay tend to zero, 

we can write Aw~/~ + Aw/Ay = 0, 
we see that w 

Y 
suffers a discontinu- 

ity at each point in the direction tangential along the whole discon- 
tinuity line, which seems to be impossible. Assuming, however, that this 
is true, we have to take into account the work of the stresses done on 
these velocity discontinuities, which again leads to J* c;J. 

It. For bending of plates it is convenient to use generalized vari- 

ables: bending and twisting moments M,, My and T, and the rate of change 
of the curvatures and the twist 

8% f 
31,=--&p 

a%J 
?ty=--r 

a2 
&_aa, 

azag' 

where v is the velocity of bending of a plate. 

The von Mises yield condition and the flow law are known: 

kL2 + i&2 - h&M, + 3P = $ fWoa (4.2) 

;c., = h (2M, - M,), x; = I (2M, - k&J, ; = 6hT (4.2) 

Acceleration of the dissipation per unit length is expressed as 
[-aw/ax]M, + [-&/aylT. I n order to prove the minimum property of J 
for the discontinuous velocities, it is necessary to determine the sign 

of 

D== -g (M,*-MM,)+[--~](T*-T) I 1 
where w is the acceleration of the deflection. 

If 
hinge 

the discontinuity line coincides with the region of the plastic 
then 

[av / az1 =#= 0, iW, = M;* = * M*, T=3’*=10 (4.4) 

(4.3) 
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and consequently f) = 0. 

ff f&J/W = 0 but t&/W1 
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# 0 then (4.4) is still true [4J. If Gx, 

KY‘ t are continuous for t = t,, but 

different from zero, then D = 0, since 
(4.2) determine kinematically admissible 
M,, MY, T uniquely. 

Finally, let 
I R-4 

I% () aa0 o aav 0 
jjzj=, w=, aZay= Fig. 

for t=t* 

From the continuity condition for v along an arbitrary 
line [&/ay] 1 0, and thus 

and hence in this case 

0 for t=t, 

3. 

discontinuity 

If in addition Dw/&l # 0 then, taking into account that Zx, KY, i: 
satisfy the flow law then, in an analogous manner as for the case of 
strong discontinuous velocities, we get Mx = f MO, but IIV,*I d M,, and 
D GO. 

Applying Hopkins results [51 I we can consider a plate using the Tresca 
plasticity condition. In particular, it is necessary to consider that 
along the discontinuity line the bending moment equals to the limiting 
value. 

The minimum principle obtained above is easily applied to an approxi- 

mate solution of the problem. 

As an example let us consider the well known problem solved by Hopkins 

and Prager [61. 

A circular, simply supported plate is subjected to uniformly dis- 

tributed load p during 0 < t < tl, and then the load is removed. (Tresca 
yield condition.) 

We shall not vary the functional J directly, but consider that the 
distribution of velocities at every instant has the form of a truncated 
cone, Fig. 3 
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for t=O (4.5) 

Thus, at the initial instant, the distribution of y coincides with an 
assumed admissible distribution of velocities 

?LJ=~ (0 Q r < PII ?&o = p - R ‘=% (p(r<R) (4.6) 

For the functional we have 

= 2n g (3pr + 2pR + ,Aa) - + (p’ + pR + Ro) + ‘El 

Equating to zero the derivatives J with respect to i and p, 
equation for in and p. Thus for p we have 

we obtain 

R 
P =o, P =.i2Mo (R - p)’ (R + p) 

Some calculations result in 

(p#O, of p>*2MoIRV (4.7) 

t zi=+ for p#O 

For t > tl we have 

.R 
L=v (O<r<p), $++tl, (~<r<Rf 

It hollows fron here 

Y =v . (Odr<p), g=tr--R) 
ir(p--RR)-vi; 

(P - R)’ (pGr<R) 

and the jump 

The functional J is 

v(p-RR)--up 
(P - W (r =p) 

J =$ ~¶(~~+2pR+~)+ 

. 
+“O(R_pp)lfir(R-~~+vP~ 
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Equating to zero the derivatives with respect to t and b we obtain 
differential equations with initial conditions (4.7) and v = ptl/m which 
determine u( t) and p(t) 

either 

ir = 0, 
12MoR 

i~(R~+ZRp-3pa) =-ptl 

or 

M,12 
Ii=- Ram , p=o 

After the determination of’ p(t) and v(t) it is possible to rind the 
whole remaining deformation. 
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